Ecosonograma Obstetrico |
Aquí encontraras la informacion necesaria para expandir los conocimientos sobre la nueva tecnología de todos los equipos de radiología e Imagenología como son: Equipos de rayos x, Ecosonogramas, Resonadores, Tomógrafos, entre otros.
sábado, 11 de junio de 2011
Ecosonograma
viernes, 10 de junio de 2011
Ultrasonido
Las imágenes por ultrasonido, también denominadas exploración por ultrasonido o ecografía, involucran la exposición del cuerpo a ondas acústicas de alta frecuencia para producir imágenes del interior del organismo. Los exámenes por ultrasonido no utilizan radiación ionizante (como se usa en los rayos X). Debido a que las imágenes por ultrasonido se capturan en tiempo real, pueden mostrar la estructura y el movimiento de los órganos internos del cuerpo, como así también la sangre que fluye por los vasos sanguíneos.
Las imágenes por ultrasonido es un examen médico no invasivo que ayuda a los médicos a diagnosticar y tratar condiciones médicas.
Clic para agrandarlas
Ultrasonido: vesícula biliar
Ultrasonido: vesícula biliar
Un estudio con ultrasonido Doppler puede ser parte de un examen con ultrasonido.
El ultrasonido Doppler consiste en una técnica especial de ultrasonido que evalúa la circulación de la sangre a través de los vasos sanguíneos, incluyendo las arterias y venas más importantes del organismo que se encuentran en el abdomen, brazos, piernas y cuello.
Existen tres tipos de ultrasonido Doppler:
- El Doppler a color utiliza una computadora para convertir las mediciones Doppler en un conjunto de colores para visualizar la velocidad y la dirección del flujo sanguíneo a través de un vaso sanguíneo.
- El Doppler con energía es una técnica más avanzada que es más sensible que el Doppler a color y es capaz de brindar un mayor detalle del flujo sanguíneo, especialmente en los vasos que se encuentran dentro de los órganos. No obstante, el Doppler con energía no ayuda al radiólogo a determinar la dirección del flujo, que puede ser importante en algunas situaciones.
- Doppler espectral. En lugar de mostrar las mediciones Doppler en forma visual, el Doppler espectral exhibe las mediciones de flujo sanguíneo de manera gráfica, en función de la distancia recorrida por unidad de tiempo.
La forma en que se ve el equipo
Los exploradores de ultrasonido consisten en una consola que contiene una computadora y sistemas electrónicos, una pantalla de visualización para video y un transductor que se utiliza para explorar el cuerpo y los vasos sanguíneos. El transductor es un dispositivo portátil pequeño que se parece a un micrófono y que se encuentra conectado al explorador por medio de un cable. El transductor envía ondas acústicas de alta frecuencia dentro del cuerpo y luego capta los ecos de retorno de los tejidos del cuerpo. Los principios se asemejan al sonar utilizado por barcos y submarinos.
La imagen por ultrasonido es inmediatamente visible en una pantalla de visualización para video contigua que se asemeja a un televisor o a un monitor de computadora. La imagen se crea en base a la amplitud (potencia), frecuencia y tiempo que le lleva a la señal sonora retornar desde el paciente hasta el transductor y el tipo de estructura del cuerpo a través de la cual viaja el sonido.
Cómo se realiza
Para la mayoría de los exámenes por ultrasonido, se coloca al paciente acostado boca arriba en una mesa de examen que puede inclinarse o moverse.
Se aplica en la zona del cuerpo a examinar un gel claro para ayudar a que el transductor haga contacto en forma segura con el cuerpo y para eliminar cavidades con aire que se encuentren entre el transductor y la piel. Luego el ecografista (el tecnólogo de ultrasonido) o el radiólogo presiona el transductor con firmeza contra la piel en varios lugares, recorriendo el área de interés o cambiando el ángulo del haz de sonido desde un lugar al otro para observar mejor el área de interés.
La ecografía Doppler se lleva a cabo utilizando el mismo transductor.
Cuando el examen finaliza, es posible que se le pida a usted que se vista y que espere unos pocos minutos mientras se revisan las imágenes obtenidas por ultrasonido.
En algunos estudios con ultrasonido, el transductor se conecta a una sonda de exploración y se coloca en una abertura natural en el cuerpo. Estos exámenes incluyen:
- Ecocardiograma transesofágico. El transductor se coloca en el esófago para obtener imágenes del corazón.
- Ultrasonido transrectal. El transductor se coloca en el recto del hombre para ver la próstata.
- Ultrasonido transvaginal. El transductor se coloca en la vagina de la mujer para ver el útero y los ovarios.
La mayoría de los exámenes por ultrasonido se completan en un lapso de 30 minutos a 1 hora.
lunes, 6 de junio de 2011
La Informática de la Resonancia Magnética
Lo primero que hace el complejo de computadoras que forma parte de un equipo de resonancia magnética es transformar las ondas de amplitud modulada en información digital.
Son los programas que corren en la computadora del control de mando los que interpretan esta información y la transforman en imágenes de alta definición, y en este punto, el grado de manipulación es sorprendente pues existe la posibilidad de destacar cualquier estructura, vascular o nerviosa, por ejemplo, sobre tejidos circundantes y agregarles el color que nos parezca conveniente para resaltarlas.
También permite hacer reconstrucciones en tercera dimensión, rotarlas y hasta seccionarlas en tantas partes como necesitemos. Esto es muy útil en la planeación de la estrategia de una cirugía
La información obtenida se almacena en cintas magnéticas a partir de las cuales se seleccionan las imágenes (8 ó 10) del área que se está estudiando, se imprimen y se interpretan por el médico especialista para entregar los resultados al médico tratante.
¿Dónde, Cómo y Cúando Surgió?
En 1945, en la Universidad de Stanford, los primeros experimentos de resonancia magnética con líquidos fueron realizados por Félix Bloch y sus asociados. En 1946, en la Universidad de Harvard, tuvieron lugar las primeras pruebas con objetos sólidos, a cargo de Edward Pucell. Ambos investigadores compartieron el Premio Nobel, en 1952, por sus trabajos.
En sus primeras etapas, la resonancia magnética se utilizó, primordialmente, en la espectroscopía una ciencia que trata sobre la energía que se transporta entre diferentes masas ante los fenómenos llamados cambios químicos. Cuando los investigadores se dieron cuenta de que un núcleo atómico cambiaba su resonancia (la energía que emite) en diferentes entornos, la resonancia magnética se convirtió en una poderosa herramienta analítica.
En 1967, el primero en aplicar los descubrimientos de la espectroscopía en organismos vivos fue Jasper Jackson. Hacia 1972, en la Universidad Estatal de Nueva York, Paul Laterbur probó que era posible utilizar estos hallazgos para producir imágenes. Este científico logró, inicialmente, crear una imagen de los protones en una muestra de agua. Después, obtuvo reproducciones de limones, pimientos, animales y, finalmente, ¡seres humanos vivos!.
¿Qué tan potente es el electromagnetismo del equipo?
Además de afectar la carga positiva de los protones, cambiándola a negativa; el electromagnetismo también genera una gran cantidad de calor, por lo cual estos aparatos cuentan con sistemas refrigerantes.
Para que tengas una idea de la cantidad de energía que circula en un sistema de resonancia magnética, piensa que la fuerza electromagnética de estos aparatos se mide en gausses y teslas. El gauss equivale al poder de la gravedad en la Tierra y un tesla, a 10 mil gausses ó 10 mil veces el campo electromagnético terrestre.
El equipo se encuentra dentro de un cuarto forrado de cobre en su interior para evitar la interferencia de cualquier onda de radio frecuencia que pudiera llegar del exterior. A esto se le conoce como Jaula de Faraday.
El magneto, que es el corazón del sistema, está encerrado en un cubo de plástico. No se permiten materiales ferrosos, porque la gran fuerza de atracción podría ocasionar accidentes. Estos magnetos generan un campo magnético estático que polariza o cambia el valor de las cargas de los protones del cuerpo. Estos componentes del átomo, cambian, entonces, su valor de positivo a negativo; cuando el efecto del imán cesa, los protones regresan a la normalidad y desprenden una energía que es captada por antenas, que envían estos datos a las computadoras para que las analicen y organicen en imágenes.
Para que el imán súper conductor no se caliente, pues el proceso sube la temperatura a +269° centígrados, el magneto se forra con hilo súper refrigerado, el cual enfría el sistema a –269° centígrados, para lograr contrarrestar el calor y brindar una temperatura normal al paciente.
La refrigeración se logra introduciendo en tuberías especiales substancias refrigerantes conocidas como criogénicos; éstos pueden ser helio o nitrógeno líquidos, de manera similar al sistema del refrigerador en tu casa.
Resonancia Magnética
La resonancia magnética es el más reciente avance tecnológico de la medicina para el diagnóstico preciso de múltiples enfermedades, aún en etapas iniciales.
Está constituido por un complejo conjunto de aparatos emisores de electromagnetismo, antenas receptoras de radio frecuencias y computadoras que analizan datos para producir imágenes detalladas, de dos o tres dimensiones con un nivel de precisión nunca antes obtenido que permite detectar, o descartar, alteraciones en los órganos y los tejidos del cuerpo humano, evitando procedimientos molestos y agresivos como melografía (punción lumbar), artrografía (introducción de medios de contraste en articulaciones) y otros que involucran una agresión o molestia para el paciente.
Funcionamiento
Para producir imágenes sin la intervención de radiaciones ionizantes (rayos gama o X), la resonancia magnética se obtiene al someter al paciente a un campo electromagnético con un imán de 1.5 Tesla, equivalente a 15 mil veces el campo magnético de nuestro planeta.
Este poderoso imán atrae a los protones que están contenidos en los átomos de hidrógeno que conforman los tejidos humanos, los cuales, al ser estimulados por las ondas de radio frecuencia, salen de su alineamiento normal. Cuando el estímulo se suspende, los protones regresan a su posición original, liberando energía que se transforma en señales de radio para ser captadas por una computadora que las transforma en imágenes, que describen la forma y funcionamiento de los órganos.
Para la valoración de múltiples padecimientos y alteraciones corporales:
|
|
|
¿ Existen contraindicaciones para emplear la resonancia magnética?
Sí, dado el uso de fuerzas magnéticas utilizadas, el procedimiento podría ser fatal, peligroso o delicado ante las siguientes circunstancias:- Grapas implantadas mediante cirugía, para tratamiento de aneurisma intracraneal.
- Cuerpos metálicos en los ojos.
- Marcapasos cardíaco.
- Implantes metálicos en los oídos.
- Válvulas artificiales metálicas en el corazón.
Tomografia Axial Computada (TAC)
Es un método de diagnóstico médico que permite obtener imágenes del interior del cuerpo humano mediante el uso de los Rayos X , a manera de rebanadas milimétricas transversales, con el fin de estudiarlo a detalle desde la cabeza hasta los pies.
En un estudio convencional de rayos X el haz de radiación se emite de una manera difusa, pero en la tomografía axial computada (TAC) el haz está dirigido y tiene un grosor determinado que puede variar desde los 0.5 mm hasta 20 mm, dependiendo del tamaño de la estructura a estudiar.
Rayos X óseos (radiografía)
Un rayos X (radiografía) es un examen médico no invasivo que ayuda a los médicos a diagnosticar y tratar las condiciones médicas. La toma de imágenes con rayos X supone la exposición de una parte del cuerpo a una pequeña dosis de radiación ionizante para producir imágenes del interior del cuerpo. Los rayos X son la forma más antigua y de uso más frecuente para producir imágenes médicas.
Una radiografía ósea toma imágenes de cualquier hueso en el cuerpo, incluyendo la mano, muñeca, brazo, codo, hombro, pie, tobillo, pierna (espinilla), rodilla, muslo, cadera, pelvis o columna.
La forma en que se ve el equipo
El equipo generalmente utilizado para las radiografías de hueso consiste en un tubo de rayos X suspendido sobre una mesa en la que se recuesta el paciente. Un cajón debajo de la mesa sostiene la película de rayos X o la placa de registro de imagen. A veces se toma el rayos X con el paciente parado de pie, como en los casos de rayos X de la rodilla.
Una máquina portátil de rayos X es un aparato compacto que puede llevarse hasta la persona en la ama del hospital o a la sala de emergencias. El tubo de rayos X está conectado a un brazo flexible que se extiende sobre la persona, mientras que un portador de película de rayos X o la placa de registro de imágenes se ubica por debajo de la persona.
Suscribirse a:
Entradas (Atom)